首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Generalized Separable Nonnegative Matrix Factorization
【24h】

Generalized Separable Nonnegative Matrix Factorization

机译:广义可分离的非负矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) is a linear dimensionality technique for nonnegative data with applications such as image analysis, text mining, audio source separation, and hyperspectral unmixing. Given a data matrix M and a factorization rank r, NMF looks for a nonnegative matrix W with r columns and a nonnegative matrix H with r rows such that M approximate to WH. NMF is NP-hard to solve in general. However, it can be computed efficiently under the separability assumption which requires that the basis vectors appear as data points, that is, that there exists an index set K such that W = M(:,K). In this article, we generalize the separability assumption. We only require that for each rank-one factor W(:, k)II(k, :) for k = 1,2,...,r, either W(:, k) = M(:, j) for some j or H(k, :) = M(i, :) for some i. We refer to the corresponding problem as generalized separable NMF (GS-NMF). We discuss some properties of GS-NMF and propose a convex optimization model which we solve using a fast gradient method. We also propose a heuristic algorithm inspired by the successive projection algorithm. To verify the effectiveness of our methods, we compare them with several state-of-the-art separable NMF and standard NMF algorithms on synthetic, document and image data sets.
机译:非负矩阵分解(NMF)是具有图像分析,文本挖掘,音频源分离和高光谱解密的应用的非负数据的线性维度技术。给定数据矩阵M和分解等级R,NMF寻找具有R列的非负矩阵W和具有R行的非负矩阵H,使得M近似为WH。 NMF是难以解决的。然而,它可以在可分离假设下有效地计算,这要求基向量出现为数据点,即存在索引集k,使得w = m(:,k)。在本文中,我们概括了可分离的假设。对于k = 1,2,...,r,w(:,k)= m(:,j),我们只需要为每个等级w(:,k)II(k,:),...,r,w(:,j)而言有些j或h(k,:) = m(我,:)有些我。我们将相应的问题称为广义可分离NMF(GS-NMF)。我们讨论了GS-NMF的一些特性,并提出了一种使用快速梯度法解决的凸优化模型。我们还提出了一种由连续投影算法启发的启发式算法。为了验证我们方法的有效性,我们将它们与综合,文档和图像数据集的若干先前的可分离NMF和标准NMF算法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号