首页> 外文会议>International Conference on Computational Fluid Dynamics(ICCFD3); 20040712-16; Toronto(CA) >Solution of the Fluid Dynamical Formulation of Nonlinear Schrodinger Equation with Radial Basis Function Interpolation
【24h】

Solution of the Fluid Dynamical Formulation of Nonlinear Schrodinger Equation with Radial Basis Function Interpolation

机译:径向基函数插值求解非线性薛定rod方程的流体动力学公式

获取原文
获取原文并翻译 | 示例

摘要

Recently, interest in de Broglie-Bohm formulation of quantum mechanics has increased dramatically within various fields. With the wave function written in Madelung's form, the de Broglie-Bohm theory possesses an intuitive physical representation as quantum fluid dynamics (QFD), reminiscent of classical fluid dynamics. Besides its conceptual importance, the potential numerical advantage of the QFD formulation over working with the Schroedinger equation can be exploited to provide an alternative solution method. Radial basis function (RBF) interpolation has been widely used as a spatial approximation scheme for PDEs. The RBF is a very high order scheme, one can obtain excellent results using a coarser distribution of data points than with a finite difference (FD) approximation. It has been demonstrated multiquadrics (MQ) is an excellent spatial approximation scheme for nonlinear system of hyperbolic PDEs. Applications of RBF to QFD based on linear Schroedinger equation have been recently presented. In this work, we consider the RBF scheme for QFD based on Gross-Pitaevskii(GP) equation which is a nonlinear Schroedinger equation (NLSE). After substituting the polar form of the wave function into the GP equation, one obtains a set of governing equations reminiscent of compressible gas dynamics.
机译:近来,在各个领域中,对德布罗意-波姆量子力学公式的兴趣急剧增加。通过以马德隆(Madelung)形式编写的波动函数,de Broglie-Bohm理论具有直观的物理表示形式,即量子流体动力学(QFD),让人回想起经典的流体动力学。除了其概念上的重要性之外,还可以利用QFD公式相对于使用Schroedinger方程的潜在数值优势来提供替代的求解方法。径向基函数(RBF)插值已被广泛用作PDE的空间近似方案。 RBF是一种非常高阶的方案,与有限差分(FD)近似相比,使用较粗糙的数据点分布可以获得更好的结果。已经证明多二次方程(MQ)是双曲PDE非线性系统的一种出色的空间逼近方案。最近已经提出了基于线性Schroedinger方程的RBF在QFD中的应用。在这项工作中,我们考虑基于Gross-Pitaevskii(GP)方程的QFD的RBF方案,该方程是非线性Schroedinger方程(NLSE)。将波函数的极性形式代入GP方程后,可以得到一组使人联想到可压缩气体动力学的控制方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号