首页> 外文OA文献 >Solution of the quantum fluid dynamical equations with radial basis function interpolation
【2h】

Solution of the quantum fluid dynamical equations with radial basis function interpolation

机译:径向基函数插值的量子流体动力学方程的解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper proposes a numerical technique within the Lagrangian description for propagating the quantum fluid dynamical (QFD) equations in terms of the Madelung field variables R and S, which are connected to the wave function via the transformation Psi= exp{(R + iS)/(h) over bar}. The technique rests on the QFD equations depending only on the form, not the magnitude, of the probability density rho = psi(2) and on the structure of R = (h) over bar/2 In rho generally being simpler and smoother than rho. The spatially smooth functions R and S are especially suitable for multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme. Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates that the present method is superior to the existing ones, especially, for its low storage requirement and its uniform accuracy. The advantage of the new algorithm is expected to increase fur higher dimensional systems to provide a practical computational tool.
机译:本文提出了在Lagrangian描述中的数值技术,用于在Madelung场变量R和S中传播量子流体动力学(QFD)方程,其通过变换PSI = EXP {(R +是)连接到波函数。(R +是) /(h)在酒吧}。该技术仅在QFD方程上依赖于概率密度Rho = Psi (2)的形式,而不是幅度,而不是r =(h)的结构,在Rho中的r =(h)通常更简单,更顺畅比rho。空间平滑的功能R和S特别适用于多变量径向基函数插值,以实现实现稳健的数值方案。二维模型系统的示例表明,该方法竞争对手,效率和准确性,分流运算符和Chebychev扩展方法。三维模型系统上的结果表明,本方法优于现有的,特别是其低存储要求及其均匀精度。预计新算法的优点将增加毛皮高尺寸系统以提供实用的计算工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号