首页> 外文会议>International Symposium on Computing and Networking Workshops >Accelerating Facial Detection for Improvement of Person Identification Accuracy in Entering and Exiting Management System
【24h】

Accelerating Facial Detection for Improvement of Person Identification Accuracy in Entering and Exiting Management System

机译:加快人脸检测,提高出入管理系统人员识别的准确性

获取原文

摘要

Recently, needs of individual personal entering and exiting information are high by development of deep learning. In order to automatically acquire entering and exiting, it is necessary to acquire a facial image of a human who enters or exits within about one second, so a faster face detection technology is required. And the installation space of photography equipment is narrow. We developed a high-speed facial area estimation algorithm by reducing the facial search area using a high-speed image processing and speeding up with GPGPU. By executing on GPU of Jetson TX 2, execution time of the facial area estimation becomes about 14 ms and accelerating rate with respect to the conventional method is 60 times. This result shows that practical facial area estimation processing is possible even on an inexpensive and compact processor.
机译:近来,由于深度学习的发展,个人个人输入和退出信息的需求很高。为了自动获取进入和退出,需要获取在大约一秒钟内进入或退出的人的面部图像,因此需要更快的面部检测技术。并且摄影器材的安装空间狭窄。通过使用高速图像处理减少面部搜索区域并使用GPGPU加速,我们开发了一种高速面部区域估计算法。通过在Jetson TX 2的GPU上执行,面部区域估计的执行时间变为约14ms,并且相对于传统方法的加速率为60倍。该结果表明,即使在便宜且紧凑的处理器上,实际的面部面积估计处理也是可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号