首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Characterizing a Heterogeneous System for Person Detection in Video Using Histograms of Oriented Gradients: Power Versus Speed Versus Accuracy
【24h】

Characterizing a Heterogeneous System for Person Detection in Video Using Histograms of Oriented Gradients: Power Versus Speed Versus Accuracy

机译:使用定向梯度直方图表征视频中人检测的异构系统:功率与速度与精度

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new implementation, with complete analysis, of the processing operations required in a widely-used pedestrian detection algorithm (the histogram of oriented gradients (HOG) detector) when run in various configurations on a heterogeneous platform suitable for use as an embedded system. The platform consists of field-programmable gate array (FPGA), graphics processing unit (GPU), and central processing unit (CPU) and we detail the advantages of such an image processing system for real-time performance. We thoroughly analyze the consequent tradeoffs made between power consumption, latency and accuracy for each possible configuration. We thus demonstrate that prioritization of each of these factors can be made by selecting a specific configuration. These separate configurations may then be changed dynamically to respond to changing priorities of a real-time system, e.g., on a moving vehicle. We compare the performance of real-time implementations of linear and kernel support vector machines in HOG and evaluate the entire system against the state-of-the-art in real-time person detection. We also show that our FPGA implementation detects pedestrians more accurately than existing implementations, and that a heterogeneous configuration which performs image scaling on the GPU, and histogram extraction and classification on the FPGA, produces a good compromise between power and speed.
机译:本文介绍了一种新的实现方式,通过全面分析,说明了在适合用作嵌入式平台的异构平台上以各种配置运行时,广泛使用的行人检测算法(定向梯度直方图(HOG)检测器)所需的处理操作。系统。该平台由现场可编程门阵列(FPGA),图形处理单元(GPU)和中央处理单元(CPU)组成,我们详细介绍了这种图像处理系统的实时性能优势。我们彻底分析了每种可能配置的功耗,延迟和准确性之间的权衡取舍。因此,我们证明了可以通过选择特定的配置来确定每个因素的优先级。然后可以动态地改变这些单独的配置,以响应例如在移动车辆上的实时系统的改变的优先级。我们在HOG中比较了线性和内核支持向量机的实时实现的性能,并根据实时人员检测的最新技术评估了整个系统。我们还表明,与现有实现相比,我们的FPGA实现能够更准确地检测行人,并且异类配置在GPU上执行图像缩放以及FPGA上的直方图提取和分类在功耗和速度之间产生了很好的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号