首页> 外文会议>International Geoscience and Remote Sensing Symposium >Multiple instance hybrid estimator for learning target signatures
【24h】

Multiple instance hybrid estimator for learning target signatures

机译:用于学习目标签名的多实例混合估计器

获取原文

摘要

Signature-based detectors for hyperspectral target detection rely on knowing the specific target signature in advance. However, target signatures are often difficult or impossible to obtain. Furthermore, common methods for obtaining target signatures, such as from laboratory measurements or manual selection from an image scene, usually do not capture the discriminative features of target class. In this paper, an approach for estimating a discriminative target signature from imprecise labels is presented. The proposed approach maximizes the response of the hybrid sub-pixel detector within a multiple instance learning framework and estimates a set of discriminative target signatures. After learning target signatures, any signature based detector can then be applied on test data. Both simulated and real hyperspectral target detection experiments are shown to illustrate the effectiveness of the method.
机译:用于高光谱目标检测的基于签名的检测器依赖于事先知道特定的目标签名。但是,目标签名通常很难或无法获得。此外,用于获得目标签名的常用方法(例如从实验室测量或从图像场景中手动选择)通常无法捕获目标类别的区别特征。在本文中,提出了一种从不精确标签中估计可区分目标签名的方法。所提出的方法在多实例学习框架内将混合子像素检测器的响应最大化,并估计一组判别目标签名。在学习了目标签名之后,任何基于签名的检测器都可以应用于测试数据。模拟和真实的高光谱目标检测实验都说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号