首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Multiple Instance Learning for Multiple Diverse Hyperspectral Target Characterizations
【24h】

Multiple Instance Learning for Multiple Diverse Hyperspectral Target Characterizations

机译:用于多种多样的高光谱目标表征的多实例学习

获取原文
获取原文并翻译 | 示例

摘要

A practical hyperspectral target characterization task estimates a target signature from imprecisely labeled training data. The imprecisions arise from the characteristics of the real-world tasks. First, accurate pixel-level labels on training data are often unavailable. Second, the subpixel targets and occluded targets cause the training samples to contain mixed data and multiple target types. To address these imprecisions, this paper proposes a new hyperspectral target characterization method to produce diverse multiple hyperspectral target signatures under a multiple instance learning (MIL) framework. The proposed method uses only bag-level training samples and labels, which solves the problems arising from the mixed data and lack of pixel-level labels. Moreover, by formulating a multiple characterization MIL and including a diversity-promoting term, the proposed method can learn a set of diverse target signatures, which solves the problems arising from multiple target types in training samples. The experiments on hyperspectral target detections using the learned multiple target signatures over synthetic and real-world data show the effectiveness of the proposed method.
机译:实际的高光谱目标表征任务会从标记不正确的训练数据中估算目标特征。不确定性来自实际任务的特征。首先,训练数据上经常没有准确的像素级标签。其次,亚像素目标和封闭目标导致训练样本包含混合数据和多种目标类型。为了解决这些不精确性,本文提出了一种新的高光谱目标表征方法,该方法可在多实例学习(MIL)框架下产生多种多样的高光谱目标签名。所提出的方法仅使用袋级训练样本和标签,解决了由于混合数据和缺乏像素级标签而引起的问题。此外,通过制定多重特征的MIL并包括一个促进多样性的术语,所提出的方法可以学习一组不同的目标签名,从而解决了训练样本中多种目标类型引起的问题。在合成和真实数据上使用学习到的多个目标签名进行高光谱目标检测的实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号