首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Discriminative Multiple Instance Hyperspectral Target Characterization
【24h】

Discriminative Multiple Instance Hyperspectral Target Characterization

机译:区分多实例高光谱目标表征

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two methods forndiscriminative multiple instance target characterizationn, MI-SMF and MI-ACE, are presented. MI-SMF and MI-ACE estimate a discriminative target signature from imprecisely-labeled and mixed training data. In many applications, such as sub-pixel target detection in remotely-sensed hyperspectral imagery, accurate pixel-level labels on training data is often unavailable and infeasible to obtain. Furthermore, since sub-pixel targets are smaller in size than the resolution of a single pixel, training data is comprised only of mixed data points (in which target training points are mixtures of responses from both target and non-target classes). Results show improved, consistent performance over existing multiple instance concept learning methods on several hyperspectral sub-pixel target detection problems.
机译:本文针对n 提出了可区分的多实例目标特征,即MI-SMF和MI-ACE。 MI-SMF和MI-ACE从标记不正确的混合训练数据中估计出可区分的目标特征。在许多应用中,例如遥感高光谱图像中的亚像素目标检测,训练数据上的准确像素级标签通常是不可用且无法获得的。此外,由于子像素目标的尺寸小于单个像素的分辨率,因此训练数据仅由混合数据点组成(其中目标训练点是来自目标和非目标类别的响应的混合)。结果表明,在几个高光谱亚像素目标检测问题上,与现有的多实例概念学习方法相比,性能得到了改进,一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号