首页> 外文会议>International Conference on Social Informatics >Robust Modeling of Human Contact Networks Across Different Scales and Proximity-Sensing Techniques
【24h】

Robust Modeling of Human Contact Networks Across Different Scales and Proximity-Sensing Techniques

机译:跨不同规模和接近度感应技术的人类接触网络的鲁棒建模

获取原文

摘要

The problem of mapping human close-range proximity networks has been tackled using a variety of technical approaches. Wearable electronic devices, in particular, have proven to be particularly successful in a variety of settings relevant for research in social science, complex networks and infectious diseases dynamics. Each device and technology used for proximity sensing (e.g., RFIDs, Bluetooth, low-power radio or infrared communication, etc.) comes with specific biases on the close-range relations it records. Hence it is important to assess which statistical features of the empirical proximity networks are robust across different measurement techniques, and which modeling frameworks generalize well across empirical data. Here we compare time-resolved proximity networks recorded in different experimental settings and show that some important statistical features are robust across all settings considered. The observed universality calls for a simplified modeling approach. We show that one such simple model is indeed able to reproduce the main statistical distributions characterizing the empirical temporal networks.
机译:已经使用多种技术方法解决了映射人类近距离邻近网络的问题。事实证明,可穿戴电子设备在与社会科学研究,复杂网络和传染病动态研究相关的各种环境中尤其成功。用于接近感应的每种设备和技术(例如RFID,蓝牙,低功率无线电或红外通信等)在其记录的近距离关系上都有特定的偏差。因此,重要的是评估在不同的测量技术中,经验邻近网络的哪些统计特征是稳健的,以及哪些建模框架可以在经验数据之间很好地概括。在这里,我们比较了在不同实验设置中记录的时间分辨的邻近网络,并显示出在所有考虑的设置中,一些重要的统计特征都非常可靠。观察到的普遍性要求简化的建模方法。我们表明,这样一种简单的模型确实能够再现表征经验时态网络的主要统计分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号