首页> 外文会议>International Conference on Smart Communications and Networking >Smart Learning Analytics and Frequent Formative Assessments to Improve Student Retention
【24h】

Smart Learning Analytics and Frequent Formative Assessments to Improve Student Retention

机译:智能学习分析和频繁的形成性评估可提高学生保留率

获取原文

摘要

In today's world of competitive educational institutions, it is imperative that the final product, the students, are of the optimal quality as required by the professional industry. Conventionally, the progress and quality of the students were only assessed in end-of-term results, or at a few standpoints, which neglected the possibility of improving the weak areas. This shortcoming of the conventional educational system resulted in a high rejection/dropout of the potentially capable students. In this work, the authors propose adaptation of a novel content delivery, formative assessment, smart analytics and instant feedback mechanism pipelined into the educational process. The proposed model can potentially circumvent the pitfalls and significantly reduce the errors of assessment, grading, and the delivery of feedback. The proposed approach concurrently assures the quality of students at each formative step within a semester's time, thus improving the quality of intake of the subsequent standpoint. The approach has been evaluated on one subject, Functional English, within a four year Computer Science Baccalaureate program. The results of the outcomes can be plausibly extended and applied onto other educational contexts.
机译:在当今竞争激烈的教育机构中,至关重要的是,最终产品(学生)必须具有专业行业所要求的最佳质量。按照惯例,仅根据期末成绩或从几个角度评估学生的进步和素质,而忽略了改善薄弱地区的可能性。传统教育系统的这一缺点导致了潜在学生的高拒绝/辍学。在这项工作中,作者们提出了一种新颖的内容交付,形成性评估,智能分析和即时反馈机制的流水线,这些机制已被流传到教育过程中。所提出的模型可以潜在地规避陷阱,并显着减少评估,评分和反馈传递的错误。所提出的方法同时确保了一个学期时间内每个形成阶段学生的素质,从而提高了后续观点的学习质量。在为期四年的计算机科学学士学位课程中,已针对一种主题(功能英语)对该方法进行了评估。结果的结果可以合理地扩展并应用于其他教育环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号