首页> 外文会议>International Conference on Robotics and Automation >Depth Generation Network: Estimating Real World Depth from Stereo and Depth Images
【24h】

Depth Generation Network: Estimating Real World Depth from Stereo and Depth Images

机译:深度生成网络:根据立体声和深度图像估算真实世界的深度

获取原文

摘要

In this work, we propose the Depth Generation Network (DGN) to address the problem of dense depth estimation by exploiting the variational method and the deep-learning technique. In particular, we focus on improving the feasibility of depth estimation under complex scenarios given stereo RGB images, where the stereo pairs and/or depth ground-truth captured by real sensors may be deteriorated; the stereo setting parameters may be unavailable or unreliable, hence hamper efforts to establish the correspondence between image pairs via supervision learning or epipolar geometric cues. Instead of relying on real data, we supervise the training of our model using synthetic depth maps generated by the simulator, which deliver complex scenes and reliable data with ease. Two non-trivial challenges, i.e., (i) attaining reasonable amount yet realistic samples for training, and (ii) developing a model that adapts to both synthetic and real scenes arise, whereas in this work we mainly deal with the later one yet leveraging state-of-the-art Falling Things (FAT) dataset to overcome the first. Experiments on FAT and KITTI datasets demonstrate that our model estimates relative dense depth in fine details, potentially generalizable to real scenes without knowing the stereo geometric and optic settings.
机译:在这项工作中,我们提出了深度生成网络(DGN),以通过利用变分方法和深度学习技术来解决密集深度估计的问题。特别是,我们专注于在给定立体声RGB图像的复杂场景下提高深度估计的可行性,在这种情况下,真实传感器捕获的立体声对和/或深度地面实况可能会恶化;立体声设置参数可能不可用或不可靠,因此妨碍了通过监督学习或对极几何提示在图像对之间建立对应关系的努力。我们不再依赖真实数据,而是使用模拟器生成的综合深度图来监督模型的训练,该深度图可轻松提供复杂的场景和可靠的数据。面临两个非同寻常的挑战,即(i)获得合理的数量但要进行实际训练的样本,以及(ii)开发一种既适合合成场景又适合真实场景的模型,而在这项工作中,我们主要处理后来的又一个杠杆最新的“下落物”(FAT)数据集可以克服第一个问题。在FAT和KITTI数据集上进行的实验表明,我们的模型可以精确估算出相对密集的深度,并且可能会在不知道立体几何和光学设置的情况下推广到真实场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号