首页> 外文会议>International Conference on Robotics and Automation >A Data-Driven Predictive Model of Individual-Specific Effects of FES on Human Gait Dynamics
【24h】

A Data-Driven Predictive Model of Individual-Specific Effects of FES on Human Gait Dynamics

机译:FES对人的步态动力学的个体特异作用的数据驱动的预测模型

获取原文

摘要

Modeling individual-specific gait dynamics based on kinematic data could aid development of gait rehabilitation robotics by enabling robots to predict the user’s gait kinematics with and without external inputs, such as mechanical or electrical perturbations. Here we address a current limitation of data-driven gait models, which do not yet predict human gait dynamics nor responses to perturbations. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill during normal gait and during gait perturbed by functional electrical stimulation (FES) to the ankle muscles. Our SLDS models were able to generate joint angle trajectories in each of four gait phases, as well as across an entire gait cycle, given initial conditions and gait phase information. Because the SLDS dynamics matrices encoded significant coupling across joints that differed across indivdiuals, we compared the SLDS predictions to that of a kinematic model, where the joint angles were independent. Joint angle trajectories generated by SLDS and kinematic models were similar over time horizons of a few milliseconds, but SLDS models provided better predictions of gait kinematics over time horizons of up to a second. We also demonstrated that SLDS models can infer and predict individual-specific responses to FES during swing phase. As such, SLDS models may be a promising approach for online estimation and control of and human gait dynamics, allowing robotic control strategies to be tailored to an individual’s specific gait coordination patterns.
机译:根据运动学数据对特定个体的步态动力学进行建模,可以使机器人能够在有或没有外部输入(例如机械或电气扰动)的情况下预测用户的步态运动学,从而有助于步态康复机器人的发展。在这里,我们解决了数据驱动的步态模型的当前局限性,该模型尚未预测人类的步态动力学或对扰动的响应。我们使用开关线性动力系统(SLDS)对正常步态和功能性电刺激(FES)对脚踝肌肉扰动的健康人在跑步机上行走的健康个体的关节角运动学数据进行建模。我们的SLDS模型能够在给定初始条件和步态相位信息的情况下,在四个步态相位中的每个步态以及整个步态循环中生成关节角度轨迹。由于SLDS动力学矩阵在各个关节之间编码的显着耦合之间存在显着耦合,因此我们将SLDS预测与运动模型(关节角度独立)的预测进行了比较。 SLDS和运动学模型生成的关节角度轨迹在几毫秒的时间范围内是相似的,但是SLDS模型可以在长达一秒的时间范围内提供更好的步态运动学预测。我们还证明了SLDS模型可以推断和预测挥杆阶段对FES的个体特异性反应。因此,SLDS模型可能是在线估计和控制步态动态的有前途的方法,可以根据个人特定的步态协调模式来调整机器人控制策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号