首页> 外文会议>International Conference on Robotics and Automation >Visual Appearance Analysis of Forest Scenes for Monocular SLAM
【24h】

Visual Appearance Analysis of Forest Scenes for Monocular SLAM

机译:单目SLAM森林场景的视觉外观分析

获取原文

摘要

Monocular simultaneous localisation and mapping (SLAM) is a cheap and energy efficient way to enable Unmanned Aerial Vehicles (UAVs) to safely navigate managed forests and gather data crucial for monitoring tree health. SLAM research, however, has mostly been conducted in structured human environments, and as such is poorly adapted to unstructured forests. In this paper, we compare the performance of state of the art monocular SLAM systems on forest data and use visual appearance statistics to characterise the differences between forests and other environments, including a photorealistic simulated forest. We find that SLAM systems struggle with all but the most straightforward forest terrain and identify key attributes (lighting changes and in-scene motion) which distinguish forest scenes from “classic” urban datasets. These differences offer an insight into what makes forests harder to map and open the way for targeted improvements. We also demonstrate that even simulations that look impressive to the human eye can fail to properly reflect the difficult attributes of the environment they simulate, and provide suggestions for more closely mimicking natural scenes.
机译:单眼同时定位和制图(SLAM)是一种廉价且节能的方法,可让无人机(UAV)安全地管理人工林并收集对监测树木健康至关重要的数据。但是,SLAM研究主要是在结构化的人类环境中进行的,因此不适用于非结构化的森林。在本文中,我们比较了最先进的单眼SLAM系统在森林数据上的性能,并使用视觉外观统计数据来表征森林与其他环境(包括逼真的模拟森林)之间的差异。我们发现SLAM系统除了最直接的森林地形之外,都与所有其他区域作斗争,并确定了关键属性(照明变化和现场运动),这些属性将森林场景与“经典”城市数据集区分开来。这些差异提供了使森林更难以绘制地图并为有针对性的改良开辟道路的见解。我们还证明,即使对人眼而言令人印象深刻的模拟也无法正确反映其模拟环境的困难属性,也无法为更接近自然场景的模拟提供建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号