首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Monocular Visual Scene Understanding: Understanding Multi-Object Traffic Scenes
【24h】

Monocular Visual Scene Understanding: Understanding Multi-Object Traffic Scenes

机译:单目视觉场景理解:了解多对象交通场景

获取原文
获取原文并翻译 | 示例

摘要

Following recent advances in detection, context modeling, and tracking, scene understanding has been the focus of renewed interest in computer vision research. This paper presents a novel probabilistic 3D scene model that integrates state-of-the-art multiclass object detection, object tracking and scene labeling together with geometric 3D reasoning. Our model is able to represent complex object interactions such as inter-object occlusion, physical exclusion between objects, and geometric context. Inference in this model allows us to jointly recover the 3D scene context and perform 3D multi-object tracking from a mobile observer, for objects of multiple categories, using only monocular video as input. Contrary to many other approaches, our system performs explicit occlusion reasoning and is therefore capable of tracking objects that are partially occluded for extended periods of time, or objects that have never been observed to their full extent. In addition, we show that a joint scene tracklet model for the evidence collected over multiple frames substantially improves performance. The approach is evaluated for different types of challenging onboard sequences. We first show a substantial improvement to the state of the art in 3D multipeople tracking. Moreover, a similar performance gain is achieved for multiclass 3D tracking of cars and trucks on a challenging dataset.
机译:随着检测,上下文建模和跟踪方面的最新进展,场景理解已成为计算机视觉研究的新焦点。本文提出了一种新颖的概率3D场景模型,该模型将最新的多类对象检测,对象跟踪和场景标记与几何3D推理集成在一起。我们的模型能够表示复杂的对象交互,例如对象间的遮挡,对象之间的物理排除以及几何上下文。通过此模型的推断,我们可以仅使用单眼视频作为输入,就多个类别的对象从移动观察器联合恢复3D场景上下文并执行3D多对象跟踪。与许多其他方法相反,我们的系统执行显式遮挡推理,因此能够跟踪长时间被部分遮挡的对象或从未完全观察到的对象。此外,我们表明,针对在多个框架上收集的证据的联合场景小波模型可以大大提高性能。针对不同类型的挑战性机载序列对方法进行了评估。我们首先展示了对3D多人跟踪的最新技术的重大改进。此外,在具有挑战性的数据集上对汽车和卡车进行多类3D跟踪时,可以获得类似的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号