首页> 外文会议>International Conference on Robotics and Automation >“Touching to See” and “Seeing to Feel”: Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception
【24h】

“Touching to See” and “Seeing to Feel”: Robotic Cross-modal Sensory Data Generation for Visual-Tactile Perception

机译:“触摸看”和“感觉看”:用于视觉触觉感知的机器人跨模态感官数据生成

获取原文

摘要

The integration of visual-tactile stimulus is common while humans performing daily tasks. In contrast, using unimodal visual or tactile perception limits the perceivable dimensionality of a subject. However, it remains a challenge to integrate the visual and tactile perception to facilitate robotic tasks. In this paper, we propose a novel framework for the cross-modal sensory data generation for visual and tactile perception. Taking texture perception as an example, we apply conditional generative adversarial networks to generate pseudo visual images or tactile outputs from data of the other modality. Extensive experiments on the ViTac dataset of cloth textures show that the proposed method can produce realistic outputs from other sensory inputs. We adopt the structural similarity index to evaluate similarity of the generated output and real data and results show that realistic data have been generated. Classification evaluation has also been performed to show that the inclusion of generated data can improve the perception performance. The proposed framework has potential to expand datasets for classification tasks, generate sensory outputs that are not easy to access, and also advance integrated visual-tactile perception.
机译:视觉触觉刺激的整合在人类执行日常任务时很常见。相反,使用单峰视觉或触觉感知限制了对象的可感知尺寸。然而,整合视觉和触觉以促进机器人任务仍然是一个挑战。在本文中,我们提出了一种用于视觉和触觉感知的跨模式感官数据生成的新颖框架。以纹理感知为例,我们应用条件生成对抗网络从其他模态的数据生成伪视觉图像或触觉输出。 ViTac布料纹理数据集上的大量实验表明,该方法可以从其他感官输入中产生逼真的输出。我们采用结构相似性指标来评估生成的输出和真实数据的相似性,结果表明已经生成了真实数据。还进行了分类评估,表明包含生成的数据可以改善感知性能。所提出的框架有可能扩展用于分类任务的数据集,生成不容易访问的感觉输出,并且还可以推进综合的视觉触觉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号