首页> 外文会议>International Conference on Robotics and Automation >Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning
【24h】

Crowd-Robot Interaction: Crowd-Aware Robot Navigation With Attention-Based Deep Reinforcement Learning

机译:人群与机器人的交互:具有基于注意力的深度强化学习的人群感知机器人导航

获取原文

摘要

Mobility in an effective and socially-compliant manner is an essential yet challenging task for robots operating in crowded spaces. Recent works have shown the power of deep reinforcement learning techniques to learn socially cooperative policies. However, their cooperation ability deteriorates as the crowd grows since they typically relax the problem as a one-way Human-Robot interaction problem. In this work, we want to go beyond first-order Human-Robot interaction and more explicitly model Crowd-Robot Interaction (CRI). We propose to (i) rethink pairwise interactions with a self-attention mechanism, and (ii) jointly model Human-Robot as well as Human-Human interactions in the deep reinforcement learning framework. Our model captures the Human-Human interactions occurring in dense crowds that indirectly affects the robot's anticipation capability. Our proposed attentive pooling mechanism learns the collective importance of neighboring humans with respect to their future states. Various experiments demonstrate that our model can anticipate human dynamics and navigate in crowds with time efficiency, outperforming state-of-the-art methods.
机译:对于在拥挤空间中操作的机器人而言,有效且符合社会要求的机动性是一项必不可少但具有挑战性的任务。最近的工作表明,深度强化学习技术可以学习社会合作政策。但是,他们的协作能力随着人群的增长而降低,因为他们通常将问题作为单向人机交互问题来缓解。在这项工作中,我们希望超越一阶人机交互,更明确地建模人群机器人交互(CRI)。我们建议(i)重新思考具有自我注意机制的成对互动,以及(ii)在深度强化学习框架中共同对人机交互以及人机交互建模。我们的模型捕获了在密集人群中发生的人与人之间的交互,这间接地影响了机器人的预期能力。我们提出的专心共享机制可以了解相邻人在未来状态方面的集体重要性。各种实验表明,我们的模型可以预测人类动态并在人群中导航,且时间效率高,胜过最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号