首页> 外文会议>International Conference of Artificial Intelligence and Information Technology >Modified Ant Colony Algorithm For Swarm Multi Agent Exploration on Target Searching in Unknown Environment
【24h】

Modified Ant Colony Algorithm For Swarm Multi Agent Exploration on Target Searching in Unknown Environment

机译:未知环境下目标搜索群的改进蚁群算法

获取原文

摘要

The ant colony algorithm (ACA) method basically aims to solve target search problems strategy. In previous researchers, the method of ant colony have been use to solve optimization path to target, where the location of target is known. But this method cannot solve if the position of target is unknown. To solve unknown target, swarm agent can explore entire environment using ant colony algorithm. This research proposed a new method for swarm multi agent exploration on unknown target using modified ant colony algorithm based on Anti-pheromone. First strategy making swarm agent motion move direction, so that swarm agent can avoid the obstacle until find the target and the second by making swarm agent explore the entire environment using Anti-pheromone algorithm for information, the purpose of using Anti-pheromone algorithm is to make ant colony always making of decision to choose a path with a small number of pheromones. The simulated results present that modified algorithm of ant colony system can make swarm agent to explore in searching for find target position while the swarm avoid the obstacle. First simulation with 1-5 agent, using criteria (1) better solution to explore entire node, The second simulation with 1-5 agent, can finding target position more effectively using parameter (2) with minimum iterasi and minimum mileage. Proposed method can effectively enable swarm agent to search unknown target position quickly.
机译:蚁群算法(ACA)的方法主要旨在解决目标搜索问题的策略。在以前的研究人员中,蚁群方法已用于求解到目标位置的已知位置的优化路径。但是这种方法不能解决目标的位置是否未知。为了解决未知目标,群体代理可以使用蚁群算法探索整个环境。提出了一种基于反信息素的改进蚁群算法,对未知目标进行群体多主体探索。第一个策略使群体代理移动方向,从而使群体代理可以避开障碍物直到找到目标,第二个策略是使群体代理使用反信息素算法来获取信息,从而探索整个环境,而使用反信息素算法的目的是总是使蚁群决定选择一条具有少量信息素的路径。仿真结果表明,改进的蚁群系统算法可以使群体智能体在寻找避难所的同时寻找目标位置。第一次使用1-5代理进行仿真,使用条件(1)更好的解决方案来探索整个节点,第二次使用1-5代理进行仿真,可以使用参数(2)更有效地找到目标位置,并且迭代次数和里程数最小。提出的方法可以有效地使群体代理快速搜索未知目标位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号