首页> 外文会议>International Conference on Machine Learning, Big Data, Cloud and Parallel Computing >Employing Data Analytics for Academic Improvement of Students
【24h】

Employing Data Analytics for Academic Improvement of Students

机译:利用数据分析提高学生的学业水平

获取原文

摘要

Mathematical models which can aid academic assessment of students have the potential to improve the delivery of education and learning. Such models can be utilized to find out the quality of learning and influencing factors. These insights enable stakeholders to take effective measures for the attainment of educational objectives. Present work attempts to formulate two mathematical models for assessment: a predictor model for final grade predictions of students and a classifier model to identify academically weak students. Linear regression was employed for predictions while logistic regression was used for the classification. The Computation was performed in R environment. The study dealt with a dataset containing a record of three hundred ninety-five students with thirty-three attributes. Predictor model was tested with statistical metrics like VIF value, fit chart, and residual plots. Performance of classifier was investigated by using confusion matrix and kappa value. Predictor model gave a very low average error in score prediction of final grades. Classifier model demonstrated high accuracy of eighty-eight percent in identifying weak students on the test sample.
机译:可以帮助学生进行学术评估的数学模型具有改善教育和学习水平的潜力。这样的模型可以用来发现学习质量和影响因素。这些见解使利益相关者能够采取有效措施实现教育目标。当前的工作试图建立两个数学模型进行评估:一个用于学生最终成绩预测的预测器模型和一个用于识别学业较弱的学生的分类器模型。线性回归用于预测,而逻辑回归用于分类。计算是在R环境中执行的。该研究涉及一个数据集,该数据集包含记录了395个具有33个属性的学生。使用统计指标(例如VIF值,拟合图和残差图)测试了预测模型。利用混淆矩阵和kappa值研究了分类器的性能。预测模型在最终成绩的分数预测中给出了非常低的平均误差。分类器模型在识别测试样本中的弱学生方面显示出88%的高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号