首页> 外文会议>International Conference on Intelligent Transportation Systems >Collaborative Automated Driving: A Machine Learning-based Method to Enhance the Accuracy of Shared Information
【24h】

Collaborative Automated Driving: A Machine Learning-based Method to Enhance the Accuracy of Shared Information

机译:协作自动驾驶:一种基于机器学习的方法,可提高共享信息的准确性

获取原文

摘要

The perception range of the automated vehicles is limited to the line-of-sight field of view of their on-board sensors (e.g., Cameras, Radars). The aim of Collaborative automated driving is extending automated vehicles' sensors field of view to go beyond their immediate proximity, thus mitigating perception limitations. Using this technology, vehicles extract the information of objects in their surroundings, and share it with others via DSRC V2V communication. Shared information will assist the receiving vehicles in creating extended view of their surroundings. Shared information should contain the min set of attributes that best describe the shared object. It should also be descriptive enough to provide the necessary information to fulfill safetyon-safety applications requirements. The set should contain positional, motion and dimensional information. Accurate positional and dimensional information are not easily extractable in all driving scenarios. This paper proposes a machine learning-based approach integrated to the object tracking system, and capable of classifying and extracting 3D information of the objects considered for sharing. This method provides the dimension and the location of the center point of the tracked object as required by V2V communication. The results show the system is able to provide accurate positional and dimensional information.
机译:自动化车辆的感知范围仅限于其车载传感器(例如相机,雷达)的视线视野。协作自动驾驶的目的是将自动驾驶汽车的传感器视野扩大到其紧邻范围之外,从而减轻感知限制。使用该技术,车辆可以提取周围环境中的物体信息,并通过DSRC V2V通信与他人共享。共享信息将帮助接收车辆创建其周围环境的扩展视图。共享信息应包含最能描述共享库的最小属性集。它也应该具有足够的描述性,以提供必要的信息来满足安全/非安全应用程序的要求。该集合应包含位置,运动和尺寸信息。并非在所有驾驶情况下都容易提取准确的位置和尺寸信息。本文提出了一种基于机器学习的方法,该方法已集成到对象跟踪系统中,并且能够分类和提取要共享的对象的3D信息。此方法提供了V2V通信所需的被跟踪对象的中心尺寸和位置。结果表明该系统能够提供准确的位置和尺寸信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号