首页> 外文会议>International Conference on Information Technology, Information System and Electrical Engineering >Vehicle Tracking using Kalman Filter based on Smart Video Sensor Architecture
【24h】

Vehicle Tracking using Kalman Filter based on Smart Video Sensor Architecture

机译:基于智能视频传感器架构的卡尔曼滤波器的车辆跟踪

获取原文

摘要

Traffic information is needed to determine the cause of the accident. Problems arise when many traffic accidents or violations co-occur. Technical failures in delivering important frames also hinder the process of analyzing the video, which occurs due to disconnected network, limited bandwidth and CPU processing power. Besides, the size of the video to be processed at the same time slow the CPU down preventing the video from being treated. In this research, we propose Smart Video Sensor (SVS) resolve the missing frame issues. SVS is a video sensor recording images streaming frames for the frame. SVS extract only features of traffic objects and compress the video so that the data will be received faster and lighter. SVS also processes the primary data, so the other system is ready to use the features needed for further data processing. To demonstrate how well SVS works, we experimented it by tracking vehicles by type. This study uses 3 locations and 1000 frames in each area. The contribution of this paper is to produce a vehicle tracking model by type using Kalman Filter based SVS Architecture. The highest accuracy found for motorcycles is in Galeria (90.71%).
机译:需要交通信息来确定事故原因。当同时发生许多交通事故或违规时,就会出现问题。传送重要帧的技术故障也阻碍了视频分析过程,这是由于网络断开,带宽和CPU处理能力有限而发生的。此外,要同时处理的视频大小会减慢CPU的速度,从而无法处理视频。在这项研究中,我们提出了智能视频传感器(SVS)解决缺少的帧问题。 SVS是一种视频传感器,用于记录图像流帧。 SVS仅提取交通对象的特征并压缩视频,以便更快,更轻松地接收数据。 SVS还处理主要数据,因此其他系统已准备就绪,可以使用进一步数据处理所需的功能。为了演示SVS的运行状况,我们通过按类型跟踪车辆进行了实验。本研究在每个区域使用3个位置和1000帧。本文的贡献是使用基于Kalman滤波器的SVS体系结构按类型生成车辆跟踪模型。摩托车的最高准确度是在加莱里亚(90.71%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号