首页> 外文会议>International Conference on Computer Vision >Person-in-WiFi: Fine-Grained Person Perception Using WiFi
【24h】

Person-in-WiFi: Fine-Grained Person Perception Using WiFi

机译:WiFi中的人:使用WiFi的细粒度人感知

获取原文

摘要

Fine-grained person perception such as body segmentation and pose estimation has been achieved with many 2D and 3D sensors such as RGB/depth cameras, radars (e.g. RF-Pose), and LiDARs. These solutions require 2D images, depth maps or 3D point clouds of person bodies as input. In this paper, we take one step forward to show that fine-grained person perception is possible even with 1D sensors: WiFi antennas. Specifically, we used two sets of WiFi antennas to acquire signals, i.e., one transmitter set and one receiver set. Each set contains three antennas horizontally lined-up as a regular household WiFi router. The WiFi signal generated by a transmitter antenna, penetrates through and reflects on human bodies, furniture, and walls, and then superposes at a receiver antenna as 1D signal samples. We developed a deep learning approach that uses annotations on 2D images, takes the received 1D WiFi signals as input, and performs body segmentation and pose estimation in an end-to-end manner. To our knowledge, our solution is the first work based on off-the-shelf WiFi antennas and standard IEEE 802.11n WiFi signals. Demonstrating comparable results to image-based solutions, our WiFi-based person perception solution is cheaper and more ubiquitous than radars and LiDARs, while invariant to illumination and has little privacy concern comparing to cameras.
机译:通过许多2D和3D传感器(例如RGB /深度相机,雷达(例如RF-Pose)和LiDAR)已经实现了诸如人体分割和姿势估计之类的细粒度人的感知。这些解决方案需要人体的2D图像,深度图或3D点云作为输入。在本文中,我们向前迈出了一步,证明即使使用1D传感器(WiFi天线),也可以实现细粒度的人感知。具体来说,我们使用了两组WiFi天线来获取信号,即一组发射机和一组接收机。每套天线包含三个水平排列的天线,作为普通的家用WiFi路由器。由发射器天线产生的WiFi信号穿透并反射在人体,家具和墙壁上,然后作为一维信号样本叠加在接收器天线上。我们开发了一种深度学习方法,该方法在2D图像上使用注释,将接收到的1D WiFi信号作为输入,并以端到端的方式执行身体分割和姿势估计。据我们所知,我们的解决方案是基于现成WiFi天线和标准IEEE 802.11n WiFi信号的第一项工作。与基于图像的解决方案相比,我们的基于WiFi的人感解决方案具有可比的结果,它比雷达和LiDAR更便宜,更普及,并且照明不变,与摄像头相比,几乎没有隐私问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号