首页> 外文期刊>IEEE transactions on mobile computing >A Ubiquitous WiFi-Based Fine-Grained Gesture Recognition System
【24h】

A Ubiquitous WiFi-Based Fine-Grained Gesture Recognition System

机译:基于无所不在的基于WiFi的细粒度手势识别系统

获取原文
获取原文并翻译 | 示例

摘要

We present WiGest: a system that leverages changes in WiFi signal strength to sense in-air hand gestures around the user's mobile device. WiGest uses standard WiFi equipment, with no modifications, and requires no training for gesture recognition. The system identifies different RSS change primitives, from which we construct mutually-independent gesture families. These families can be mapped to distinguishable application actions. More fine-grained features can also be recognized for the detected primitives using CSI. WiGest addresses various challenges including cleaning the noisy signals, gesture type and attribute detection, reducing false positives due to interfering humans, and adapting to changing signal polarity. We implement a proof-of-concept prototype using off-the-shelf devices and extensively evaluate the system in two different environments. Our results show that WiGest detects the basic primitives with an accuracy of 87.5 percent using one AP, including through-the-wall non-line-of-sight scenarios, which increases to 96 percent using three overheard APs. Additionally, when evaluating the system using a multi-media player application, we achieve an accuracy of 96 percent. This accuracy is robust to the presence of other interfering humans, highlighting WiGest's ability to enable future ubiquitous hands-free gesture-based interaction with mobile devices.
机译:我们介绍了WiGest:一种利用WiFi信号强度的变化来感知用户移动设备周围的空中手势的系统。 WiGest使用标准的WiFi设备,无需进行任何修改,并且不需要培训就可以识别手势。该系统识别不同的RSS更改原语,从中我们构造相互独立的手势族。这些族可以映射到可区分的应用程序动作。还可以使用CSI为检测到的原语识别更细粒度的功能。 WiGest解决了各种挑战,包括清除嘈杂的信号,手势类型和属性检测,减少由于干扰人类而引起的误报以及适应不断变化的信号极性。我们使用现成的设备实施概念验证原型,并在两个不同的环境中对系统进行广泛评估。我们的结果表明,WiGest使用一个AP可以检测到87.5%的基本原语,包括穿墙非视线场景,使用三个偷听的AP可以提高到96%。此外,当使用多媒体播放器应用程序评估系统时,我们的准确性达到96%。这种准确性对于其他干扰人类的存在是有力的,突显了WiGest能够实现未来与移动设备无处不在的基于免提手势的交互的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号