首页> 外文期刊>IEEE transactions on mobile computing >Pallas: Self-Bootstrapping Fine-Grained Passive Indoor Localization Using WiFi Monitors
【24h】

Pallas: Self-Bootstrapping Fine-Grained Passive Indoor Localization Using WiFi Monitors

机译:Pallas:使用WiFi监视器自引导细粒度的被动室内本地化

获取原文
获取原文并翻译 | 示例

摘要

Passive indoor localization for smartphones requires no explicit cooperation of the smartphone and enables a new spectrum of applications such as passive user tracking, mobility monitoring, social pattern analysis, etc. However, existing passive localization methods either achieve coarse-grained localization accuracy or require expensive infrastructure support. In this paper, we present Pallas, a self-bootstrapping system for fine-grained passive indoor localization using non-intrusive WiFi monitors. Pallas uses off-the-shelf access point hardware to opportunistically capture WiFi packets to infer the location of smartphones in the indoor environment. The key novelty of Pallas lies in that the passive fingerprint database for localization is automatically constructed and updated without any active participation of WiFi devices or manual calibration. To achieve this, Pallas first identifies passive landmarks that are present in WiFi RSS traces. Given the knowledge of the indoor floor plan and the location of WiFi monitors, Pallas statistically maps the collected RSS traces to specific indoor pathways. With sufficient mapping opportunistically detected, Pallas is able to bootstrap a fine-grained passive fingerprint database and build Gaussian processes for localization automatically without requiring any additional calibration effort.
机译:智能手机的被动室内本地化不需要智能手机的明确合作,并可以实现新的应用范围,例如被动用户跟踪,移动性监控,社交模式分析等。但是,现有的被动本地化方法要么实现粗粒度的定位精度,要么需要昂贵的定位基础架构支持。在本文中,我们介绍了Pallas,这是一种使用非侵入式WiFi监视器的细粒度被动室内定位的自引导系统。 Pallas使用现成的接入点硬件来机会捕获WiFi数据包,以推断智能手机在室内环境中的位置。 Pallas的关键新颖之处在于,用于本地化的被动指纹数据库是自动构建和更新的,而无需WiFi设备的任何积极参与或手动校准。为此,Pallas首先确定WiFi RSS跟踪中存在的被动地标。知道了室内平面图和WiFi监视器的位置后,Pallas可以统计地将收集的RSS迹线映射到特定的室内路径。通过机会性地检测到足够的映射,Pallas能够引导细粒度的被动指纹数据库并自动建立用于定位的高斯过程,而无需任何额外的校准工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号