首页> 外文会议>International conference on applications of evolutionary computation;Evostar conferences >Genetic Programming for Feature Selection and Feature Combination in Salient Object Detection
【24h】

Genetic Programming for Feature Selection and Feature Combination in Salient Object Detection

机译:显着目标检测中特征选择和特征组合的遗传规划

获取原文

摘要

Salient Object Detection (SOD) aims to model human visual attention system to cope with the complex natural scene which contains various objects at different scales. Over the past two decades, a wide range of saliency features have been introduced in the SOD field, however feature selection has not been widely investigated for selecting informative, non-redundant, and complementary features from the existing features. In SOD, multi-level feature extraction and feature combination are two fundamental stages to compute the final saliency map. However, designing a good feature combination framework is a challenging task and requires domain-expert intervention. In this paper, we propose a genetic programming (CP) based method that is able to automatically select the complementary saliency features and generate mathematical function to combine those features. The performance of the proposed method is evaluated using four benchmark datasets and compared to nine state-of-the-art methods. The qualitative and quantitative results show that the proposed method significantly outperformed, or achieved comparable performance to, the competitor methods.
机译:显着物体检测(SOD)旨在为人类视觉注意力系统建模,以应对复杂的自然场景,其中包含不同比例的各种物体。在过去的二十年中,SOD领域引入了各种各样的显着性特征,但是尚未对从选择现有特征中选择信息性,非冗余和互补性特征的特征选择进行广泛研究。在SOD中,多层特征提取和特征组合是计算最终显着性图的两个基本阶段。但是,设计一个好的功能组合框架是一项艰巨的任务,需要领域专家的干预。在本文中,我们提出了一种基于遗传编程(CP)的方法,该方法能够自动选择互补的显着性特征,并生成数学函数以组合这些特征。使用四个基准数据集评估了所提出方法的性能,并与九种最新方法进行了比较。定性和定量结果表明,所提出的方法明显优于或优于竞争对手的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号