首页> 外文会议>Independent component analyses, wavelets, neural networks, biosystems, and nanoengineering VIII >Computer-Aided Diagnosis and Lipidomics Analysis to Detect and Treat Breast Cancer
【24h】

Computer-Aided Diagnosis and Lipidomics Analysis to Detect and Treat Breast Cancer

机译:检测和治疗乳腺癌的计算机辅助诊断和脂质组学分析

获取原文
获取原文并翻译 | 示例

摘要

Multi-modality diagnosis techniques are more and more replacing traditional medical imaging for breast cancer detection. Newly emerging advances in both intelligent cancer detection systems and lipidomics technologies offer an excellent opportunity to detect tumors and to understand regulation at the molecular level in many diseases such as cancer. In this paper, we present a detailed computer-aided diagnosis (CAD) systems combining motion artefact reduction and automated feature extraction and classification, and a novel data mining approach for visualization of gene therapy leading to apoptosis in U87 MG glioblastoma cells, a secondary tumor of breast cancer. The achieved results show that the CAD system represents a robust and integrative tool for reliable small contrast enhancing lesions. Graph-clustering methods are introduced as powerful correlation networks which enable a simultaneous exploration and visualization of co-regulation in glioblastoma data. These new paradigms are providing unique "fingerprints" by revealing how the intricate interactions at the lipidome level can be employed to induce apoptosis (cell death) and are thus opening a new window to biomedical frontiers.
机译:多模式诊断技术正越来越多地取代传统的医学成像技术来检测乳腺癌。智能癌症检测系统和脂质组学技术的最新发展为检测肿瘤和了解许多疾病(例如癌症)的分子水平调控提供了极好的机会。在本文中,我们介绍了结合运动伪影减少和自动特征提取与分类的详细计算机辅助诊断(CAD)系统,以及一种可视化的基因治疗新数据挖掘方法,该基因治疗可导致U87 MG胶质母细胞瘤细胞(继发性肿瘤)凋亡乳腺癌。所获得的结果表明,CAD系统代表了一种可靠的小对比度增强病变的强大工具。图形聚类方法是作为强大的关联网络而引入的,它可以同时探索和可视化胶质母细胞瘤数据中的共调节。这些新范式通过揭示如何在脂质组水平上进行复杂的相互作用来诱导凋亡(细胞死亡),从而提供了独特的“指纹”,从而为生物医学领域开辟了新窗口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号