首页> 外文会议>Image and Signal Processing >Joint Multiple Target Tracking and Classification Using Controlled Based Cheap JPDA-Multiple Model Particle Filter in Cluttered Environment
【24h】

Joint Multiple Target Tracking and Classification Using Controlled Based Cheap JPDA-Multiple Model Particle Filter in Cluttered Environment

机译:杂波环境下使用基于受控廉价JPDA-多模型粒子滤波器的联合多目标跟踪与分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of jointly tracking and classifying several targets in cluttered environment. It is assumed that the motion model of a given target belongs to one of several classes. We propose to use the multiple model particle filter (MMPF) to perform nonlinear filtering with switching dynamic models. Moreover, the principle of joint probabilistic data association (JPDA) is used to determine the measurements origin. Besides, the joint probabilities are calculated using Fitzgerald's had hoc formulation (Cheap JPDA) whose efficiency has been proven in the literature. On the other hand, a controller based on the quality of the innovation has been implemented in order to tune the number of particles. The feasibility and the performances of the proposal have been demonstrated using a set of Monte Carlo simulations dealing with two maneuvering targets.
机译:在本文中,我们解决了在杂乱环境中对多个目标进行联合跟踪和分类的问题。假定给定目标的运动模型属于几种类别之一。我们建议使用多模型粒子滤波器(MMPF)来执行带有切换动态模型的非线性滤波。此外,联合概率数据关联(JPDA)的原理用于确定测量的起点。此外,联合概率是使用费兹杰拉德的特设公式(Cheap JPDA)计算出来的,其效率已在文献中得到证明。另一方面,已经实现了基于创新质量的控制器,以调整粒子数量。该提案的可行性和性能已通过一组涉及两个机动目标的蒙特卡洛模拟进行了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号