首页> 外文期刊>Intelligent automation and soft computing >CHEAP JOINT PROBABILISTIC DATA ASSOCIATION WITH NEURAL NETWORK STATE FILTER FOR TRACKING MULTIPLE TARGETS IN CLUTTERED ENVIRONMENT
【24h】

CHEAP JOINT PROBABILISTIC DATA ASSOCIATION WITH NEURAL NETWORK STATE FILTER FOR TRACKING MULTIPLE TARGETS IN CLUTTERED ENVIRONMENT

机译:具有神经网络状态过滤器的廉价联合概率数据关联,用于在杂乱的环境中跟踪多个目标

获取原文
获取原文并翻译 | 示例

摘要

In this paper a cheap joint probabilistic data association (CJPDA) with the neural network state filter (NNSF) is presented for tracking multiple targets in low and high cluttered environments. The state update step of the CJPDA filter (CJPDAF) is realized with the NNSF instead of Kalman filter. Through simulation, a comparison is made to show the performance difference between the CJPDA with NNSF (CJPDA-NNSF) proposed in this paper and the CJPDAF for different tracking scenarios. It was shown that the tracking performance of the proposed method is better than that of the CJPDAF.
机译:在本文中,提出了一种廉价的联合概率数据关联(CJPDA)和神经网络状态过滤器(NNSF),用于在低和高混乱环境中跟踪多个目标。 CJPDA滤波器(CJPDAF)的状态更新步骤是使用NNSF而不是卡尔曼滤波器来实现的。通过仿真比较,表明本文提出的带有NNSF的CJPDA(CJPDA-NNSF)和CJPDAF在不同跟踪场景下的性能差异。结果表明,所提方法的跟踪性能优于CJPDAF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号