首页> 外文会议>Image Processing pt.1 >Analysis of digitized cervical images to detect cervical neoplasia
【24h】

Analysis of digitized cervical images to detect cervical neoplasia

机译:分析数字化宫颈图像以检测宫颈肿瘤

获取原文

摘要

Cervical cancer is the second most common malignancy in women worldwide. If diagnosed in the premalignant stage, cure is invariably assured. Although the Papanicolaou (Pap) smear has significantly reduced the incidence of cervical cancer where implemented, the test is only moderately sensitive, highly subjective and skilled-labor intensive. Newer optical screening tests (cervicography, direct visual inspection and speculoscopy), including fluorescent and reflective spectroscopy, are fraught with certain weaknesses. Yet, the integration of optical probes for the detection and discrimination of cervical neoplasia with automated image analysis methods may provide an effective screening tool for early detection of cervical cancer, particularly in resource poor nations. Investigative studies are needed to validate the potential for automated classification and recognition algorithms. By applying image analysis techniques for registration, segmentation, pattern recognition, and classification, cervical neoplasia may be reliably discriminated from normal epithelium. The National Cancer Institute (NCI), in cooperation with the National Library of Medicine (NLM), has embarked on a program to begin this and other similar investigative studies.
机译:宫颈癌是全世界女性中第二常见的恶性肿瘤。如果在癌前期被诊断出,则一定可以治愈。尽管Papanicolaou(Pap)涂片已显着降低了实施宫颈癌的发生率,但该测试仅具有中等敏感性,高度主观性和熟练工人密集度。包括荧光和反射光谱在内的较新的光学筛查测试(宫颈造影,直接视觉检查和光谱检查)充满了某些缺点。然而,用于检测和鉴别宫颈肿瘤的光学探针与自动图像分析方法的集成可能为早期检测宫颈癌提供有效的筛选工具,特别是在资源贫乏的国家。需要进行调查研究以验证自动分类和识别算法的潜力。通过应用图像分析技术进行配准,分割,模式识别和分类,可以将宫颈赘生物与正常上皮可靠地区分开。美国国家癌症研究所(NCI)与美国国家医学图书馆(NLM)合作开展了一项计划,以开始这项研究和其他类似的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号