首页> 外文会议>Image processing: machine vision applications VIII >Classification of Hyperspectral Images Based on Conditional Random Fields
【24h】

Classification of Hyperspectral Images Based on Conditional Random Fields

机译:基于条件随机场的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

A significant increase in the availability of high resolution hyperspectral images has led to the need for developing pertinent techniques in image analysis, such as classification. Hyperspectral images that are correlated spatially and spectrally provide ample information across the bands to benefit this purpose. Conditional Random Fields (CRFs) are discriminative models that carry several advantages over conventional techniques: no requirement of the independence assumption for observations, flexibility in defining local and pairwise potentials, and an independence between the modules of feature selection and parameter leaning. In this paper we present a framework for classifying remotely sensed imagery based on CRFs. We apply a Support Vector Machine(SVM) classifier to raw remotely sensed imagery data in order to generate more meaningful feature potentials to the CRFs model. This approach produces promising results when tested with publicly available AVIRIS Indian Pine imagery.
机译:高分辨率高光谱图像的可用性的显着增加导致需要开发图像分析中的相关技术,例如分类。在空间和光谱上相关的高光谱图像可在整个频带上提供足够的信息,从而有利于此目的。条件随机场(CRF)是判别模型,具有优于常规技术的多个优点:不需要观测的独立性假设,定义局部和成对电势的灵活性以及特征选择和参数倾斜模块之间的独立性。在本文中,我们提出了一个基于CRF对遥感影像进行分类的框架。我们将支持向量机(SVM)分类器应用于原始遥感影像数据,以便为CRF模型生成更有意义的特征潜力。当使用公开可用的AVIRIS印度松图像进行测试时,这种方法会产生令人鼓舞的结果。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY, USA;

    Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY, USA,Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY, USA;

    Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology, 77 Lomb Memorial Drive, Rochester, NY, USA;

    School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY, USA;

    Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image classification; hyperspectral image; support vector machine; conditional random fields;

    机译:图像分类;高光谱图像支持向量机条件随机场;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号