首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Conditional Random Field and Deep Feature Learning for Hyperspectral Image Classification
【24h】

Conditional Random Field and Deep Feature Learning for Hyperspectral Image Classification

机译:用于高光谱图像分类的条件随机场和深度特征学习

获取原文
获取原文并翻译 | 示例

摘要

Image classification is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, a convolutional neural network (CNN) has established itself as a powerful model in classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the classification performance. In this paper, we propose a method to classify hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral band groups to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of 3-D data cubes. Furthermore, we introduce a deep deconvolution network that improves the final classification performance. We also introduced a new data set and experimented our proposed method on it along with several widely adopted benchmark data sets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.
机译:图像分类被认为是高光谱遥感图像处理中的关键任务之一。最近,通过展示出色的性能,卷积神经网络(CNN)已将自身确立为强大的分类模型。使用诸如条件随机场(CRF)之类的图形模型还有助于捕获上下文信息,从而提高分类性能。在本文中,我们提出了一种通过考虑由CNN和CRF组成的组合框架同时考虑光谱和空间信息的高光谱图像分类方法。我们使用多个光谱带组来学习使用CNN的深度特征,然后用基于CNN的一元和成对势函数来公式化深度CRF,以有效地提取由3D数据立方体组成的补丁之间的语义相关性。此外,我们引入了深度反卷积网络,可提高最终分类性能。我们还介绍了一个新的数据集,并在其中尝试了我们提出的方法,以及一些被广泛采用的基准数据集,以评估该方法的有效性。通过将我们的结果与几个最新模型的结果进行比较,我们证明了该方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号