首页> 美国卫生研究院文献>other >An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification
【2h】

An Optimization-based Framework to Learn Conditional Random Fields for Multi-label Classification

机译:基于优化的学习条件随机字段的多标签分类框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies multi-label classification problem in which data instances are associated with multiple, possibly high-dimensional, label vectors. This problem is especially challenging when labels are dependent and one cannot decompose the problem into a set of independent classification problems. To address the problem and properly represent label dependencies we propose and study a pairwise conditional random Field (CRF) model. We develop a new approach for learning the structure and parameters of the CRF from data. The approach maximizes the pseudo likelihood of observed labels and relies on the fast proximal gradient descend for learning the structure and limited memory BFGS for learning the parameters of the model. Empirical results on several datasets show that our approach outperforms several multi-label classification baselines, including recently published state-of-the-art methods.
机译:本文研究了多标签分类问题,其中数据实例与多个可能是高维的标签向量相关联。当标签是从属的并且不能将问题分解为一组独立的分类问题时,此问题尤其具有挑战性。为了解决该问题并正确表示标签依赖性,我们提出并研究了成对条件随机场(CRF)模型。我们开发了一种从数据中学习CRF的结构和参数的新方法。该方法最大程度地提高了观察到的标签的伪似然性,并依赖于快速的近端梯度下降来学习结构,并使用有限的内存BFGS来学习模型的参数。在多个数据集上的经验结果表明,我们的方法优于多个多标签分类基准,包括最近发布的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号