首页> 外文会议>IEEE/RSJ International Conference on Intelligent Robots and Systems;IROS 2009 >Model-based and learned semantic object labeling in 3D point cloud maps of kitchen environments
【24h】

Model-based and learned semantic object labeling in 3D point cloud maps of kitchen environments

机译:厨房环境的3D点云图中基于模型的学习型语义对象标记

获取原文

摘要

We report on our experiences regarding the acquisition of hybrid Semantic 3D Object Maps for indoor household environments, in particular kitchens, out of sensed 3D point cloud data. Our proposed approach includes a processing pipeline, including geometric mapping and learning, for processing large input datasets and for extracting relevant objects useful for a personal robotic assistant to perform complex manipulation tasks. The type of objects modeled are objects which perform utilitarian functions in the environment such as kitchen appliances, cupboards, tables, and drawers. The resulted model is accurate enough to use it in physics-based simulations, where doors of 3D containers can be opened based on their hinge position. The resulted map is represented as a hybrid concept and is comprised of both the hierarchically classified objects and triangular meshes used for collision avoidance in manipulation routines.
机译:我们报告了我们从感测到的3D点云数据中获取用于室内家庭环境(尤其是厨房)的混合语义3D对象图的经验。我们提出的方法包括处理管道,包括几何映射和学习,用于处理大型输入数据集并提取对个人机器人助手执行复杂操作任务有用的相关对象。建模对象的类型是在环境中执行功利功能的对象,例如厨房用具,橱柜,桌子和抽屉。生成的模型足够精确,可以在基于物理的模拟中使用它,其中3D容器的门可以根据其铰链位置打开。生成的地图表示为混合概念,它由分层分类的对象和用于在操作例程中避免碰撞的三角形网格组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号