首页> 外文学位 >Visual localization, semantic video segmentation and labeling using satellite maps.
【24h】

Visual localization, semantic video segmentation and labeling using satellite maps.

机译:视觉定位,语义视频分割和使用卫星地图的标记。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, I propose vision-based geo-localization and segmentation methods that make use of semantic and appearance information from satellite images. First, I present a framework for vision-based localization of moving platforms by registering perspective camera images to satellite maps and by employing particle filter tracking techniques. I present different versions of the localization framework for stereo and monocular imagery. Second, I propose a novel computer vision method that uses semantic elements for efficient localization of a given aerial image in a large search area. In this method, I use buildings on the aerial image as semantic elements and make use of building neighborhood structures to obtain accurate localization results, efficiently. For this problem, I perform tests on a very large city building dataset with 300K buildings. Third, I propose a novel framework for semantic segmentation and labeling of videos that propagates semantic information from satellite maps on to globally localized video frames. This method generates accurate labeling of semantic elements without performing any prior learning on the video itself. Finally, in order to understand and extract semantic information from satellite images, I investigate algorithms for semantically labeling satellite images; mainly focusing on labeling buildings, roads, sidewalks, and crosswalks from satellite images. I propose novel techniques to estimate sidewalk paths occluded by trees on satellite images.
机译:本文提出了一种基于视觉的地理定位和分割方法,该方法利用了卫星图像的语义和外观信息。首先,我通过将透视相机图像注册到卫星地图并采用粒子过滤器跟踪技术,提出了一个基于视觉的移动平台定位框架。我介绍了用于立体图像和单眼图像的本地化框架的不同版本。其次,我提出了一种新颖的计算机视觉方法,该方法使用语义元素在较大的搜索区域中有效定位给定的航拍图像。在这种方法中,我将航拍图上的建筑物用作语义元素,并利用建筑物邻域结构有效地获取准确的定位结果。对于此问题,我对具有300K建筑物的超大型城市建筑物数据集进行了测试。第三,我提出了一种用于视频的语义分割和标记的新颖框架,该框架将语义信息从卫星地图传播到全局本地化的视频帧。此方法无需对视频本身进行任何事先学习即可生成语义元素的准确标记。最后,为了理解并从卫星图像中提取语义信息,我研究了语义标记卫星图像的算法。主要关注通过卫星图像标记建筑物,道路,人行道和人行横道。我提出了新颖的技术来估计卫星图像上树木遮挡的人行道。

著录项

  • 作者

    Senlet, Turgay.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Computer science.;Robotics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号