首页> 外文会议>IEEE/RSJ International Conference on Intelligent Robots and Systems;IROS 2012 >Vision-aided inertial navigation for resource-constrained systems
【24h】

Vision-aided inertial navigation for resource-constrained systems

机译:资源受限系统的视觉辅助惯性导航

获取原文

摘要

In this paper we present a resource-adaptive framework for real-time vision-aided inertial navigation. Specifically, we focus on the problem of visual-inertial odometry (VIO), in which the objective is to track the motion of a mobile platform in an unknown environment. Our primary interest is navigation using miniature devices with limited computational resources, similar for example to a mobile phone. Our proposed estimation framework consists of two main components: (i) a hybrid EKF estimator that integrates two algorithms with complementary computational characteristics, namely a sliding-window EKF and EKF-based SLAM, and (ii) an adaptive image-processing module that adjusts the number of detected image features based on the availability of resources. By combining the hybrid EKF estimator, which optimally utilizes the feature measurements, with the adaptive image-processing algorithm, the proposed estimation architecture fully utilizes the system's computational resources. We present experimental results showing that the proposed estimation framework is capable of real-time processing of image and inertial data on the processor of a mobile phone.
机译:在本文中,我们提出了一种用于实时视觉辅助惯性导航的资源自适应框架。具体来说,我们专注于视觉惯性测距(VIO)问题,其目的是在未知环境中跟踪移动平台的运动。我们的主要兴趣是使用具有有限计算资源的微型设备进行导航,例如类似于移动电话。我们提出的估算框架包含两个主要部分:(i)混合EKF估算器,该估算器集成了具有互补计算特征的两种算法,即滑动窗口EKF和基于EKF的SLAM,以及(ii)自适应图像处理模块根据资源的可用性检测到的图像特征的数量。通过将最佳利用特征测量的混合EKF估计器与自适应图像处理算法相结合,所提出的估计体系结构充分利用了系统的计算资源。我们提供的实验结果表明,提出的估计框架能够在手机处理器上实时处理图像和惯性数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号