首页> 外文会议>IEEE International Symposium on Computer-Based Medical Systems >A Comparison Study on EEG Signal Processing Techniques Using Motor Imagery EEG Data
【24h】

A Comparison Study on EEG Signal Processing Techniques Using Motor Imagery EEG Data

机译:基于运动图像脑电数据的脑电信号处理技术的比较研究

获取原文

摘要

Brain-computer interfaces (BCIs) have been gaining momentum in making human-computer interaction more natural, especially for people with neuro-muscular disabilities. Among the existing solutions the systems relying on electroencephalograms (EEG) occupy the most prominent place due to their non-invasiveness. In this work, we provide a review of various existing techniques for the identification of motor imagery (MI) tasks. More specifically, we perform a comparison between Common Spatial Patterns (CSP) related features and features based on Power Spectral Density (PSD) techniques. Furthermore, for the identification of MI tasks, two well-known classifiers are used, the Linear Discriminant Analysis (LDA) and the Support Vector Machines (SVM). Our results confirm that PSD features demonstrate the most consistent robustness and effectiveness in extracting patterns for accurately discriminating between left and right MI tasks.
机译:脑机接口(BCI)在使人机交互更加自然的过程中获得了发展动力,特别是对于神经肌肉障碍者而言。在现有解决方案中,依靠脑电图(EEG)的系统由于其非侵入性而占据了最突出的位置。在这项工作中,我们提供了各种现有技术来识别运动图像(MI)任务的综述。更具体地说,我们在公共空间模式(CSP)相关功能和基于功率谱密度(PSD)技术的功能之间进行比较。此外,为了识别MI任务,使用了两个著名的分类器:线性判别分析(LDA)和支持向量机(SVM)。我们的结果证实了PSD功能在提取模式以准确地区分左右MI任务方面显示出最一致的鲁棒性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号