首页> 外文会议>IEEE International Conference on Robotics & Automation >Identifying support surfaces of climbable structures from 3D point clouds
【24h】

Identifying support surfaces of climbable structures from 3D point clouds

机译:从3D点云中识别可攀爬结构的支撑面

获取原文

摘要

This paper presents a probabilistic technique for identifying support surfaces like floors, walls, stairs, and rails from unstructured 3D point cloud scans. A Markov random field is employed to model the joint probability of point labels, which can take on a number of user-defined surface classes. The probability of a point depends on both local spatial features of the point cloud around the point as well as the classifications of points in its neighborhood. The training step estimates joint and pairwise potentials from labeled point cloud datasets, and the prediction step aims to maximize the joint probability of all labels using a hill-climbing procedure. The method is applied to stair and ladder detection from noisy and partial scans using three types of sensors: a sweeping laser sensor, time-offlight depth camera, and a Kinect depth camera. The resulting classifier achieves approximately 75% accuracy and is robust to variations in point density.
机译:本文提出了一种概率技术,可通过非结构化3D点云扫描识别支撑表面,如地板,墙壁,楼梯和轨道。使用马尔可夫随机场来建模点标签的联合概率,该点概率可以采用许多用户定义的表面类别。点的概率既取决于点云在该点周围的局部空间特征,也取决于其附近点的分类。训练步骤从标记的点云数据集中估计联合和成对电势,预测步骤旨在使用爬山程序最大化所有标签的联合概率。该方法适用于使用三种类型的传感器从噪声和部分扫描进行的楼梯和梯子检测:扫掠激光传感器,行车时间深度相机和Kinect深度相机。最终的分类器达到约75%的精度,并且对点密度的变化具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号