首页> 外文会议>IEEE International Conference on Robotics & Automation >Uncertainty-constrained robot exploration: A mixed-integer linear programming approach
【24h】

Uncertainty-constrained robot exploration: A mixed-integer linear programming approach

机译:不确定性受限的机器人探索:混合整数线性规划方法

获取原文

摘要

In this paper we consider the situation in which a robot is deployed in an unknown scenario and has to explore the entire environment without possibility of measuring its absolute position. The robot can take relative position measurements (from odometry and from place revisiting episodes) and can then estimate autonomously its trajectory. Therefore, the quality of the resulting estimate depends on the motion strategy adopted by the robot. The problem of uncertainty-constrained exploration is then to explore the environment while satisfying given bounds on the admissible uncertainty in the estimation process. We adopt a moving horizon strategy in which the robot plans its motion T steps ahead. Our formulation leads to a mixed-integer linear problem that has several desirable properties: (i) it guarantees that the robot motion is collision free, (ii) it guarantees that the uncertainty constraints are met, (iii) it enables the design of algorithms that efficiently solve moderately sized instances of the exploration problem. We elucidate on the proposed formulation with numerical experiments.
机译:在本文中,我们考虑了在未知场景中部署机器人并且必须探索整个环境而无法测量其绝对位置的情况。机器人可以进行相对位置测量(从里程计和地点重现),然后可以自动估计其轨迹。因此,结果估计的质量取决于机器人采用的运动策略。因此,不确定性约束勘探的问题是在估算过程中满足可接受的不确定性的给定界限的同时探索环境。我们采用了移动视野策略,其中机器人计划了其运动T向前的步长。我们的公式导致了一个混合整数线性问题,该问题具有几个理想的属性:(i)确保机器人运动无碰撞;(ii)确保满足不确定性约束;(iii)允许设计算法有效解决中等规模的勘探问题。我们通过数值实验来阐明建议的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号