首页> 外文会议>IEEE International Conference on Robotics & Automation >Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments
【24h】

Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments

机译:基于学习的非线性模型预测控制,可改善挑战性室外环境中基于视觉的移动机器人的路径跟踪

获取原文

摘要

This paper presents a Learning-based Nonlinear Model Predictive Control (LB-NMPC) algorithm for an autonomous mobile robot to reduce path-tracking errors over repeated traverses along a reference path. The LB-NMPC algorithm uses a simple a priori vehicle model and a learned disturbance model. Disturbances are modelled as a Gaussian Process (GP) based on experience collected during previous traversals as a function of system state, input and other relevant variables. Modelling the disturbance as a GP enables interpolation and extrapolation of learned disturbances, a key feature of this algorithm. Localization for the controller is provided by an on-board, vision-based mapping and navigation system enabling operation in large-scale, GPS-denied environments. The paper presents experimental results including over 1.8 km of travel by a four-wheeled, 50 kg robot travelling through challenging terrain (including steep, uneven hills) and by a six-wheeled, 160 kg robot learning disturbances caused by unmodelled dynamics at speeds ranging from 0.35 m/s to 1.0 m/s. The speed is scheduled to balance trial time, path-tracking errors, and localization reliability based on previous experience. The results show that the system can start from a generic a priori vehicle model and subsequently learn to reduce vehicle- and trajectory-specific path-tracking errors based on experience.
机译:本文提出了一种用于自主移动机器人的基于学习的非线性模型预测控制(LB-NMPC)算法,以减少沿参考路径重复遍历的路径跟踪误差。 LB-NMPC算法使用简单的先验车辆模型和学习的干扰模型。根据以前遍历期间收集的经验,将扰动建模为高斯过程(GP),该经验是系统状态,输入和其他相关变量的函数。将干扰建模为GP可以对学习到的干扰进行插值和外推,这是该算法的关键功能。控制器的本地化由车载,基于视觉的地图和导航系统提供,可在大规模GPS拒绝的环境中进行操作。本文介绍了实验结果,其中包括四轮50公斤的机器人在充满挑战的地形(包括陡峭,崎hill不平的山丘)中行驶超过1.8公里,以及六轮160公斤的机器人学习干扰,这些干扰是由未建模的动力学以速度范围从0.35 m / s到1.0 m / s根据以前的经验,计划速度以平衡试用时间,路径跟踪错误和定位可靠性。结果表明,该系统可以从通用的先验车辆模型开始,然后根据经验学习减少车辆和轨迹特定的路径跟踪错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号