首页> 外文会议>IEEE International Conference on Robotics & Automation >Online parameter optimization in robotic force controlled assembly processes
【24h】

Online parameter optimization in robotic force controlled assembly processes

机译:机器人力控制装配过程中的在线参数优化

获取原文

摘要

In the high precision robotic assembly processes, the process parameters have to be tuned in order to adapt to variations and satisfy the performance requirements. However, because of the modeling difficulty and low efficiency of the existing solutions, this task is usually performed offline. In this paper, an online parameter optimization method is developed. Gaussian Process Regression(GPR) is utilized to model the relationship between the process parameters and system performance. The GPR surrogated Bayesian Optimization Algorithm(GPRBOA) is proposed to optimize the process parameters. To reduce the risk of converging to a local minimum, a random variation factor is added to the Lower Confidence Bound(LCB) acquisition function to balance the exploration and exploitation processes. To deal with the computational burden of GPR, a switching criterion is proposed to coordinate the optimization process and production process to reduce the computational complexity. Experiments were performed using a peg-in-hole process. The experimental results verify the effectiveness of the proposed algorithm and demonstrate its efficiency and accuracy compared to Design Of Experiment(DOE) methods. The proposed method is the first attempt of model-driven assembly process parameter optimization and will generate big economic impact.
机译:在高精度机器人组装过程中,必须调整过程参数,以适应变化并满足性能要求。然而,由于现有解决方案的建模困难和效率低下,该任务通常是离线执行的。本文提出了一种在线参数优化方法。高斯过程回归(GPR)用于对过程参数与系统性能之间的关系进行建模。提出了基于GPR的贝叶斯优化算法(GPRBOA)来优化工艺参数。为了降低收敛到局部最小值的风险,将随机变化因子添加到低置信度(LCB)采集函数中,以平衡勘探和开发过程。为解决GPR的计算负担,提出了一种切换准则,以协调优化过程和生产过程,以降低计算复杂度。使用孔钉法进行实验。实验结果验证了该算法的有效性,并与“实验设计”方法进行了比较,证明了其有效性和准确性。该方法是模型驱动的装配工艺参数优化的首次尝试,将产生巨大的经济影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号