首页> 外文会议>IEEE International Conference on Robotics and Biomimetics;ROBIO 2008 >Sparse distributed memory for experience-based robot manipulation
【24h】

Sparse distributed memory for experience-based robot manipulation

机译:稀疏的分布式内存,用于基于经验的机器人操作

获取原文

摘要

Sparse distributed memory (SDM) is a mathematical technique based on the properties of high-dimensional space for storing and retrieving large binary patterns. This model has been proposed for cerebellar functions, and has been used in simple visual and linguistic applications to date. This paper presents an SDM for robotic applications, especially for storing and recognising mobile manipulation actions of a 6-DOF robot arm. Sequences of events are stored as subjective experiences and are later used to guide robot arm behaviour based on its memory content. Several simple manipulation tasks, such as lift and place a wastebin from and on the floor, push an object aside on a table-top, and draw shapes in the air are analysed under different operation modes. The robot system shows good reproduction abilities of task-dependent arm trajectories based on sparse distributed memory. Moreover, the content-addressable, associative memory even predicts the residual arm trajectory of a task if the arm is placed somewhere close to a learnt trajectory.
机译:稀疏分布式内存(SDM)是一种基于高维空间属性的数学技术,用于存储和检索大型二进制模式。该模型已被提出用于小脑功能,并且迄今为止已用于简单的视觉和语言应用中。本文提出了一种用于机器人应用的SDM,特别是用于存储和识别6自由度机器人手臂的移动操纵动作的SDM。事件序列被存储为主观体验,随后用于基于其记忆内容来指导机械手行为。在不同的操作模式下,可以分析几种简单的操作任务,例如从地板上放垃圾箱并将其放在地板上,将物体推到桌面上,以及在空中绘制形状。该机器人系统基于稀疏分布的内存显示出与任务相关的手臂轨迹的良好再现能力。而且,如果将手臂放在靠近学习的轨迹的某处,则内容可寻址的关联存储器甚至可以预测任务的剩余手臂轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号