首页> 外文会议>IEEE International Conference on Biomedical Robotics and Biomechatronics >Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition
【24h】

Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition

机译:探索肌电手势识别中的手臂姿势和时间变异性。

获取原文

摘要

Hand gesture recognition based on myoelectric (EMG) signals is an innovative approach for the development of intuitive interaction devices, ranging from poliarticulated prosthetic hands to intuitive robot and mobile interfaces. Their study and development in controlled environments provides promising results, but effective real-world adoption is still limited due to reliability problems, such as motion artifacts and arm posture, temporal variability and issues caused by the re-positioning of sensors at each use. In this work, we present an EMG dataset collected with the aim to explore postural and temporal variability in the recognition of arm gestures. Its collection of gestures executed in 4 arm postures over 8 days allows to evaluate the impact of such variability on classification performance. We implemented and tested State-of-the-Art (SoA) recognition approaches analyzing the impact of different training strategies. Moreover, we compared the computational and memory requirements of the considered algorithms, providing an additional evaluation criteria useful for real-time implementation. Results show a decrease in the recognition of inter-posture and inter-day gestures up to 20%. The provided dataset will allow further exploration of such effects and the development of effective training and recognition strategies.
机译:基于肌电(EMG)信号的手势识别是一种创新的方法,用于开发直观的交互设备,范围从多关节假肢到直观的机器人和移动界面。他们在受控环境中的研究和开发提供了可喜的结果,但是由于可靠性问题(例如运动伪影和手臂姿势,时间可变性以及每次使用时传感器的重新放置引起的问题),有效的实际采用仍然受到限制。在这项工作中,我们提出了一个EMG数据集,目的是探索手臂手势识别中的姿势和时间变化。它收集了8天以4个手臂姿势执行的手势,从而可以评估这种可变性对分类性能的影响。我们实施并测试了最新技术(SoA)识别方法,分析了不同培训策略的影响。此外,我们比较了所考虑算法的计算和内存需求,并提供了对实时实施有用的附加评估标准。结果表明,姿势间和日间手势的识别率下降了20%。提供的数据集将允许进一​​步探索这种影响,并开发有效的训练和识别策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号