首页> 外文会议>IEEE International Conference on Bioinformatics and Computational Biology >Feature Engineering in Discrimination of Herbal Medicines from Different Geographical Origins with Electronic Nose
【24h】

Feature Engineering in Discrimination of Herbal Medicines from Different Geographical Origins with Electronic Nose

机译:电子鼻识别不同地理来源的草药的特征工程

获取原文

摘要

As pharmacists attach great significance to geographical origins of herbal medicines, cheap, nondestructive and convenient methods for discriminating herbal medicines originated from diverse regions are much in need. This work proposes a method of using electronic nose to discriminate herbal medicines from different origins. With 5 categories of herbal medicines and 3 to 4 geographical origins for each category, 8 pattern recognition algorithms prove the feasibility of the classification task and SVM, LDA and BP neural network have shown better classification accuracy. Additionally, feature engineering approaches are used to facilitate classification, showing that normalization based on each feature and each sensor and centralization prove to be better normalization approaches for classifiers; a proper degree of noise addition help classifiers get better generalization ability; finally, feature selection with SNR could lead to more efficient classifiers by selecting the most meaningful features and disregarding unnecessary features. This work provides insights for future herbal medicine evaluation based on electronic nose with better combinations of pattern recognition algorithms and feature engineering approaches for optimal classification performances.
机译:由于药剂师非常重视草药的地理起源,因此迫切需要廉价,无损且方便的方法来区分源自不同地区的草药。这项工作提出了一种使用电子鼻来区分不同来源草药的方法。通过5种草药类别和每种类别3至4个地理起源,8种模式识别算法证明了分类任务的可行性,并且SVM,LDA和BP神经网络已显示出更好的分类准确性。另外,使用特征工程方法来促进分类,这表明基于每个特征和每个传感器的归一化以及集中化证明是更好的分类器归一化方法。适当程度的噪声添加有助于分类器获得更好的泛化能力;最后,通过选择最有意义的特征而忽略不必要的特征,具有SNR的特征选择可以导致更有效的分类器。这项工作为基于电子鼻的未来草药评估提供了见识,将模式识别算法与功能工程方法更好地结合在一起,可获得最佳的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号