首页> 外文会议>IEEE International Conference on Applied System Innovation >Sparse feature extraction based on sparse representation and dictionary learning for rolling bearing fault diagnosis
【24h】

Sparse feature extraction based on sparse representation and dictionary learning for rolling bearing fault diagnosis

机译:基于稀疏表示和字典学习的稀疏特征提取在滚动轴承故障诊断中的应用

获取原文

摘要

The feature vector is composed of multiple characteristics which can reflect fault information of the rolling bearing. In order to quantify the sensitivity of features for fault diagnosis, the quantitative problem is transformed into the sparse representation problem based on the sparse representation theory. Since the feature vector sparseness is unknown, a sparse dictionary is constructed based on data training. The new method is proposed to extract sparse features from the sparse coefficient and used for fault classification and recognition. The results of experiments have verified that the method is effectiveness.
机译:特征向量由多个特征组成,可以反映滚动轴承的故障信息。为了量化特征对故障诊断的敏感性,基于稀疏表示理论将量化问题转化为稀疏表示问题。由于特征向量的稀疏度未知,因此基于数据训练构造了稀疏字典。提出了一种从稀疏系数中提取稀疏特征的新方法,用于故障分类和识别。实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号