首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Detecting Incipient Faults in Quad-rotor Unmanned Aerial Vehicle Based on Detrending and Denoising Techniques
【24h】

Detecting Incipient Faults in Quad-rotor Unmanned Aerial Vehicle Based on Detrending and Denoising Techniques

机译:基于去趋势和去噪技术的四旋翼无人机早期故障检测

获取原文

摘要

Incipient faults are not easy to be detected, because they tend to be buried by the trend or the measurement noise. The paper proposes an applicable method for detecting incipient fault in the quad-rotor unmanned aerial vehicle (UAV). The approach in this paper is based on a detrending and denoising technique. The detrending algorithm is implemented based on the selected design functions, which can extract the normal trend from the training data, and then predict the normal trend in the testing data. The denoising algorithm is realized based on the weighted cumulative sum method, which can reduce the variance of the noise in the prediction residual. The proposed method is applied to detect the incipient fault in an experimental quad-rotor UAV, which shows that the performance of the proposed method is better than the traditional multivariate detection statistic in detecting incipient faults.
机译:初期故障不易被发现,因为它们容易被趋势或测量噪声掩盖。提出了一种适用于四旋翼无人机的早期故障检测方法。本文中的方法基于去趋势和去噪技术。基于选择的设计功能实现去趋势算法,可以从训练数据中提取正态趋势,然后预测测试数据中的正态趋势。去噪算法是基于加权累加和的方法实现的,可以减少预测残差中噪声的方差。将该方法应用于实验性四旋翼无人机初发故障的检测,表明该方法在检测初发故障方面优于传统的多元检测统计方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号