首页> 外文会议>Evolutionary computation, machine learning and data mining in bioinformatics >Gaussian Graphical Models to Infer Putative Genes Involved in Nitrogen Catabolite Repression in S. cerevisiae
【24h】

Gaussian Graphical Models to Infer Putative Genes Involved in Nitrogen Catabolite Repression in S. cerevisiae

机译:高斯图形模型,以推断参与酿酒酵母氮分解代谢抑制的基因。

获取原文
获取原文并翻译 | 示例

摘要

Nitrogen is an essential nutrient for all life forms. Like most unicellular organisms, the yeast Saccharomyces ceremsiae transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen catabolite repression (NCR) refers to this selection mechanism. We propose an approach based on Gaussian graphical models (GGMs), which enable to distinguish direct from indirect interactions between genes, to identify putative NCR genes from putative NCR regulatory motifs and over-represented motifs in the upstream noncoding sequences of annotated NCR genes. Because of the high-dimensionality of the data, we use a shrinkage estimator of the covariance matrix to infer the GGMs. We show that our approach makes significant and biologically valid predictions. We also show that GGMs are more effective than models that rely on measures of direct interactions between genes.
机译:氮是所有生命形式的必需营养素。像大多数单细胞生物一样,酿酒酵母酵母运输和分解代谢良好的氮源,优先于不良的氮源。氮分解代谢物阻抑(NCR)是指这种选择机制。我们提出了一种基于高斯图形模型(GGM)的方法,该方法能够区分基因之间的直接相互作用与间接相互作用,以从假定的NCR调控基序和注释的NCR基因上游非编码序列中过度表达的基序中识别出假定的NCR基因。由于数据的高维性,我们使用协方差矩阵的收缩估计量来推断GGM。我们证明了我们的方法做出了重要且生物学上有效的预测。我们还显示GGM比依赖于基因之间直接相互作用的量度的模型更有效。

著录项

  • 来源
  • 会议地点 Tubingen(DE);Tubingen(DE)
  • 作者单位

    Machine Learning Group, Faculte des Sciences, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium;

    rnPhysiologic Moleculaire de la Cellule, IBMM, Faculte des Sciences, ULB,Rue des Pr. Jeener et Brachet 12, 6041 Gosselies, Belgium;

    rnLaboratoire de Bioinformatique des Genomes et des Reseaux, Faculte des Sciences,ULB, Boulevard du Triomphe CP 263, 1050 Brussels, Belgium;

    rnMachine Learning Group, Faculte des Sciences, Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP 212, 1050 Brussels, Belgium;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 程序设计、软件工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号