首页> 外文会议>Engineering applications of neural networks >Application of Radial Bases Function Network and Response Surface Method to Quantify Compositions of Raw Goat Milk with Visible/Near Infrared Spectroscopy
【24h】

Application of Radial Bases Function Network and Response Surface Method to Quantify Compositions of Raw Goat Milk with Visible/Near Infrared Spectroscopy

机译:径向基函数网络和响应面法在可见/近红外光谱定量生山羊乳成分中的应用

获取原文
获取原文并翻译 | 示例

摘要

Raw goat milk pricing is based on the milk quality especially on fat, solid not fat (SNF) and density. Therefore, there is a need of approach for composition quantization. This study applied radial basis function network (RBFN) to calibrate fat, SNF, and density with visible and near infrared spectra (400-2500 nm). To find the optimal parameters of goal error and spread used in RBFN, a response surface method (RSM) was employed. Results showed that with the optimal parameters suggested by RSM analysis, R2 difference for training and testing data set was the smallest which indicated the model was less possible of overtraining or undertraining. The R2 for testing set was 0.9569, 0.8420 and 0.8743 for fat, SNF and density, respectively, when optimal parameters were used in RBFN.
机译:生山羊奶的定价基于牛奶的质量,尤其是脂肪,固体非脂肪(SNF)和密度。因此,需要一种用于成分量化的方法。这项研究应用了径向基函数网络(RBFN)来校准脂肪,SNF和具有可见和近红外光谱(400-2500 nm)的密度。为了找到RBFN中使用的目标误差和散布的最佳参数,采用了响应面法(RSM)。结果表明,利用RSM分析建议的最佳参数,训练和测试数据集的R2差异最小,这表明该模型不太可能过度训练或训练不足。当在RBFN中使用最佳参数时,测试集的R2对于脂肪,SNF和密度分别为0.9569、0.8420和0.8743。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号