首页> 外文会议>Document recognition and retrieval XIX >Quantify Spatial Relations to Discover Handwritten Graphical Symbols
【24h】

Quantify Spatial Relations to Discover Handwritten Graphical Symbols

机译:量化空间关系以发现手写图形符号

获取原文
获取原文并翻译 | 示例

摘要

To model a handwritten graphical language, spatial relations describe how the strokes are positioned in the 2-dimensional space. Most of existing handwriting recognition systems make use of some predefined spatial relations. However, considering a complex graphical language, it is hard to express manually all the spatial relations. Another possibility would be to use a clustering technique to discover the spatial relations. In this paper, we discuss how to create a relational graph between strokes (nodes) labeled with graphemes in a graphical language. Then we vectorize spatial relations (edges) for clustering and quantization. As the targeted application, we extract the repetitive sub-graphs (graphical symbols) composed of graphemes and learned spatial relations. On two handwriting databases, a simple mathematical expression database and a complex flowchart database, the unsupervised spatial relations outperform the predefined spatial relations. In addition, we visualize the frequent patterns on two text-lines containing Chinese characters.
机译:为了建模手写图形语言,空间关系描述笔划如何在二维空间中定位。大多数现有的手写识别系统利用一些预定义的空间关系。但是,考虑到复杂的图形语言,很难手动表达所有空间关系。另一种可能性是使用聚类技术来发现空间关系。在本文中,我们讨论了如何在图形语言中用字素标记的笔画(节点)之间创建关系图。然后,我们对空间关系(边缘)进行矢量化以进行聚类和量化。作为目标应用程序,我们提取了由字素和学习到的空间关系组成的重复子图(图形符号)。在两个手写数据库(一个简单的数学表达式数据库和一个复杂的流程图数据库)上,无监督的空间关系优于预定义的空间关系。此外,我们将两个包含汉字的文本行上的频繁模式可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号