首页> 外文会议>Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012 >Hierarchical analog circuit reliability analysis using multivariate nonlinear regression and active learning sample selection
【24h】

Hierarchical analog circuit reliability analysis using multivariate nonlinear regression and active learning sample selection

机译:使用多元非线性回归和主动学习样本选择的分层模拟电路可靠性分析

获取原文

摘要

The paper discusses a technique to perform efficient circuit reliability analysis of large analog and mixed-signal systems. The proposed method includes the impact of both process variations and transistor aging effects. The complexity of large systems is dealt with by partitioning the system into manageable subblocks that are modeled separately. These models are then evaluated to obtain the system specifications. However, highly expensive reliability simulations, combined with nonlinear output behavior and the high dimensionality of the problem is still a very challenging task. Therefore the use of fast function extraction symbolic regression (FFX) is proposed. This allows to capture the high-dimensional nonlinear problem with good accuracy. Also, an active learning sample selection algorithm is introduced to minimize the amount of expensive aging simulations. The algorithm trades of space exploration with function nonlinearity detection and model uncertainty reduction to select optimal model training samples. The simulation method is demonstrated on a 6 bit Flash ADC, designed in a 32nm CMOS technology. Experimental results show a speedup of 360× over existing aging simulators to evaluate 100 Monte-Carlo samples with good accuracy.
机译:本文讨论了一种用于对大型模拟和混合信号系统执行高效电路可靠性分析的技术。所提出的方法包括工艺变化和晶体管老化效应的影响。大型系统的复杂性通过将系统划分为可管理的子块(分别建模)来解决。然后评估这些模型以获得系统规格。但是,非常昂贵的可靠性仿真与非线性输出行为和问题的高维度相结合仍然是一项非常具有挑战性的任务。因此,建议使用快速函数提取符号回归(FFX)。这允许以良好的精度捕获高维非线性问题。此外,还引入了主动学习样本选择算法,以最大程度地减少昂贵的老化模拟量。该算法在空间探索与功能非线性检测和模型不确定性降低之间进行权衡,以选择最佳模型训练样本。在采用32nm CMOS技术设计的6位Flash ADC上演示了该仿真方法。实验结果表明,与现有的老化模拟器相比,其速度提高了360倍,可准确评估100个蒙特卡洛样品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号