首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Efficient Hierarchical Performance Modeling for Analog and Mixed-Signal Circuits via Bayesian Co-Learning
【24h】

Efficient Hierarchical Performance Modeling for Analog and Mixed-Signal Circuits via Bayesian Co-Learning

机译:通过贝叶斯共同学习对模拟和混合信号电路进行有效的分层性能建模

获取原文
获取原文并翻译 | 示例

摘要

With the continuous drive toward integrated circuits scaling, efficient performance modeling is becoming more crucial yet more challenging. In this paper, we propose a novel method of hierarchical performance modeling based on Bayesian co-learning. We exploit the hierarchical structure of a circuit to establish a Bayesian framework where unlabeled data samples are generated to improve modeling accuracy without running additional simulation. Consequently, our proposed method only requires a small number of labeled samples, along with a large number of unlabeled samples obtained at almost no-cost, to accurately learn a performance model. Our numerical experiments demonstrate that the proposed approach achieves up to 3.6× runtime speed-up over the state-of-the-art modeling technique without surrendering any accuracy.
机译:随着集成电路规模的不断发展,高效的性能建模变得越来越重要,同时也更具挑战性。在本文中,我们提出了一种基于贝叶斯协同学习的分层性能建模的新方法。我们利用电路的分层结构来建立贝叶斯框架,在该框架中生成未标记的数据样本以提高建模精度,而无需运行其他仿真。因此,我们提出的方法仅需要少量标记的样本,以及几乎无成本获得的大量未标记的样本,即可准确地学习性能模型。我们的数值实验表明,与最新的建模技术相比,所提出的方法可将运行速度提高3.6倍,而不会降低精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号