首页> 外文会议>Conference on Intelligent Robots and Computer Vision XX: Algorithms, Techniques, and Active Vision Oct 29-31, 2001, Newton, USA >Robotic automation for space: planetary surface exploration, terrain-adaptive mobility, and multi-robot cooperative tasks
【24h】

Robotic automation for space: planetary surface exploration, terrain-adaptive mobility, and multi-robot cooperative tasks

机译:太空机器人自动化:行星表面探测,适应地形的移动性和多机器人协作任务

获取原文
获取原文并翻译 | 示例

摘要

During the last decade, there has been significant progress toward a supervised autonomous robotic capability for remotely controlled scientific exploration of planetary surfaces. While planetary exploration potentially encompasses many elements ranging from orbital remote sensing to subsurface drilling, the surface robotics element is particularly important to advancing in situ science objectives. Surface activities include a direct characterization of geology, mineralogy, atmosphere and other descriptors of current and historical planetary processes―and ultimately―the return of pristine samples to Earth for detailed analysis. Toward these ends, we have conducted a broad program of research on robotic systems for scientific exploration of the Mars surface, with minimal remote intervention. The goal is to enable high productivity semi-autonomous science operations where available mission time is concentrated on robotic operations, rather than up-and-down-link delays. Results of our work include prototypes for landed manipulators, long-ranging science rovers, sampling/sample return mobility systems, and more recently, terrain-adaptive reconfigurable/modular robots and closely cooperating multiple rover systems. The last of these are intended to facilitate deployment of planetary robotic outposts for an eventual human-robot sustained scientific presence. We overview our progress in these related areas of planetary robotics R&D, spanning 1995-to-present.
机译:在过去的十年中,在受监督的自主机器人功能方面取得了重大进展,该功能可用于对行星表面进行远程控制的科学探索。尽管行星探测可能包含从轨道遥感到地下钻探的许多要素,但地面机器人要素对于推进现场科学目标特别重要。地表活动包括对地质,矿物学,大气层以及当前和历史行星过程的其他特征的直接表征,最终是将原始样品返回地球进行详细分析。为此,我们进行了广泛的机器人程序研究计划,以最少的远程干预就可以对火星表面进行科学探索。目标是实现高生产率的半自主科学操作,在这种操作中,可用任务时间集中在机器人操作上,而不是上下链接延迟。我们的工作成果包括用于陆地机械手的原型,远程科学漫游车,采样/样本返回机动性系统,以及最近的地形适应性可重构/模块化机器人以及紧密协作的多个流动站系统。这些中的最后一个旨在促进行星式机器人哨所的部署,以最终实现人类机器人持续的科学存在。我们概述了从1995年至今在行星机器人技术研发的这些相关领域中所取得的进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号